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 Problems with overlapping scope 

 

 But cultures differ 
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Popular Network Models 

 

 Point-to-point graphs 

 

 Broadcast channel 

 

 Unit disk graph (wireless broadcast) 

 

 SINR threshold model (wireless interference) 
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 “Accurate” network models 

       can lead to more interesting problems 
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This talk 

 

 Example   …  consensus 
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Consensus 

 

 Multiple parties / agents / nodes 

 
– Initial input at one or more nodes 

 

 

 All nodes agree in the end 

 

 Some notion of validity for agreed value 
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Consensus  … Dictionary Definition 

 

 Majority of opinion 

 

 General agreement 
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Many Faces of Consensus 

 All nodes have non-null input / only a subset do 

 

 No failures / failures allowed (node/link) 

 

 Synchronous/asynchronous 

 

 Deterministically correct / probabilistically correct 

 

 Exact agreement / approximate agreement 

 

 Global communication / local communication 
30 



Consensus in Practice 

 

 Fault-tolerant file systems 

 

 Fault-tolerant servers 

 

 Distributed control 

 

 Social networks 
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 Source node S broadcasts to others 

 

 n – 1   other nodes 



Byzantine Broadcast 

 

Source S an input  (command) 

 

  Fault-free nodes agree on identical value 

 

  S fault-free      agree on its input 

 

  Up to  f  Byzantine node failures 

 
 

44 



Byzantine Fault Model 

 Nodes may fail 

 

 Arbitrarily bad behavior 

 
Packet tampering 

 
Packet dropping 

 

      … anything goes 
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Many Faces of Consensus 
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 All nodes have non-null input / only a subset do 

 

 No failures / failures allowed (node/link) 

 

 Synchronous/asynchronous 

 

 Deterministically correct / probabilistically correct 

 

 Exact agreement / approximate agreement 

 

 Global communication / local communication 



Byzantine Broadcast 

 

Example algorithm           [Lamport,Shostak,Pease 1982] 

 

 4  nodes 

 

 At most 1 faulty node 

 

 n = 4  

 f = 1 

 

47 



S 

3 
2 1 

Byzantine Broadcast 

48 

Faulty 

n = 4 input v 



S 

3 
2 1 

v 

v 
v 

Byzantine Broadcast 

49 

Faulty 

n = 4 input v 



S 

3 
2 1 

v 

v 

50 

v v 

Broadcast 

input v 

v 



S 

3 
2 1 

v 

v 

51 

input v 

v v 

? 

? 

Broadcast 

v 



S 

3 
2 1 

v 

v 

52 

input v 

v v 

? 

v ? 

Broadcast 

v 

v 



3 
2 

v 

v 

53 

input v 

v 

? 

v ? 
[v,v,?] 

[v,v,?] 

S 

1 

Broadcast 

v 

v 

v 



3 
2 

v 

v 

54 

input v 

v 

? 

v ? 
v 

v 

S 

1 

    Majority vote 

 Correct 

Broadcast 

v 

v 

v 



S 

3 
2 1 

v 

w 

x 

55 

Faulty 

Broadcast 

Bad source may 
attempt to 
diverge state at 
good nodes 



S 

3 
2 

v 

w 

56 

w w 1 

Broadcast 

x 



S 

3 
2 

v 

w 

57 x 

w w 

v 

x v 

1 

Broadcast 

x 



S 

3 
2 

v 

w 

58 

w w 

v 

x v 

1 [v,w,x] 

[v,w,x] 

[v,w,x] 

Broadcast 

x 

x 



S 

3 
2 

v 

w 

59 

w w 

v 

x v 

1 [v,w,x] 

[v,w,x] 

[v,w,x] 

Vote 
identical at 
good nodes 

Broadcast 

x 

x 



Known Bounds 

 

 

 n ≥ 3f + 1   nodes to tolerate  f  failures 

 

 Connectivity ≥ 2f + 1 

 

 Ω(n2)  messages in worst case 

 

 f+1 rounds of communication 
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Impact of Network 

 

 How to quantify the impact ? 
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Metric 1: 
Communication Cost per Bit 

 

 

          Total communication cost (in bits)  

       Number of bits of Byzantine broadcast 
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Communication Cost per Bit 

 

 

          Total communication cost (in bits)  

       Number of bits of Byzantine broadcast 

 

 

 

      Ignores network characteristics 



Metric 2: 
Throughput 

 

 Borrow notion of throughput from networking 

 

 

 b(t) = number of bits agreed upon in [0,t] 
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Impact of Network 

 How does the network affect 

Byzantine broadcast/consensus ? 
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Consider earlier algorithm … 

 

 All data sent on each link once 

  broadcast throughput 10 
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Example 

 broadcast throughput 1 
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Point-to-Point Networks 

 

 How to best exploit available link capacity ? 

 
Symmetric case 

 

Asymmetric case 
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Symmetric Case 

 “Replication” code 
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Can we do better ? 

 More efficient code  …  standard tool in Communication 
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After Failure Detection 

 

 

 More work required after failure detection 

 

 But not too many times 
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Symmetric Case 

 Per link capacity R 
 
 Byzantine broadcast rate  (n-1-f)R 
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Arbitrary Networks 

 

 

Optimal Byzantine Broadcast algorithm unknown 
 

 

  Throughput within constant factor 
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Algorithm Sketch 

 

 Broadcast data without fault tolerance 
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Local Coding 

Each directed link can 
carry 1 symbol 
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X1, Y1, Z1 

X4, Y4, Z4 

X3, Y3, Z3 

X2, Y2, Z2 X3 + 3Y3 + 9Z3 

 

X3 + 8Y3 + 64Z3 

 

Each node sends linear 

combinations of its 
data symbols 
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X3 + 8Y3 + 64Z3 

 

Each node checks 
consistency of 

received packets 
with own data 

= X3 + 3Y3 + 9Z3   ? 
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Failure Detection 

 

 Equality function 

 

 Faulty nodes should not be able to make unequal 
values appear equal 

 

 Utilize link capacities 
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Experimental Evaluation 
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Ethernet: Failure-Free Case 
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Wrap-Up 
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This Talk 

 

 Byzantine broadcast 

 

 

 To illustrate 
 
 impact of network 
 
  on algorithm design & performance 

94 



Rich Problem Space 

 

 More realism in network model can change 
solutions quite significantly 
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Rich Problem Space 

 Networks … wired, wireless 

 

 Computations … many of interest 

 

 Metrics … how to capture impact of networks? 
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Rich Problem Space 

Need new ways to 

 formulate   &   solve 

   old problems 
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Thanks! 
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Average Consensus 

 Centralized solution 
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Iterative Average Consensus 
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Well-Known Result 

 

 

 State of the nodes converges to average 

 

 Results assuming loss-less links 
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Wireless Network Model 

 

 Time varying topology 
… mobility of nodes, links breaking, etc. 

 

 Algorithm converges to average 
if available links are reliable 
and the topology is connected over time 
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More Accurate Model ? 

 

 Unreliable transmissions 

 “Mass transfer” needs to be reliable for the 
algorithm to work 

 

 

 B should know that A has received mass 

 A should know that B knows that A has received mass 

 … 

 Common knowledge required 
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Unreliable Links 

 

 How to design iterative algorithms in presence of 
unreliable links 

 

 

 

 Changes the problem & solution approach significantly 

 

 Possible to converge to average 
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Lossy Links 

 Node B may not be able to 
reliably transfer mass to a neighbor 
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Asymmetric Networks 

 Upper bound 1 on throughput 
 
 min-cut(S,X | f peers removed) 

 

S 

2 1 

121 

3 

f = 1 
X = 1 



Asymmetric Networks 

 Upper bound 1 on throughput 
 
 min-cut(S,X | f peers removed) 

 

S 

2 1 

122 

3 

f = 1 
X = 1 



Asymmetric Networks 

 Upper bound 1 on throughput 
 
 min-cut(S,X | f peers removed) 

 

S 

2 1 

123 

f = 1 
X = 1 



Asymmetric Networks 

 Upper bound 1 on throughput 
 
 min-cut(S,X | f peers removed) 

 

S 

2 1 

124 

f = 1 
X = 1 



Asymmetric Networks 

 Upper bound 2 on throughput 
 
  incoming(X | f nodes removed) 
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4-Node Networks 

 

 Our approach using 
 

    capacity-dependent coding 
 
   optimal 
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Arbitrary Networks 

 

Reduction 

 

     Consensus with Byzantine fault tolerance 

 

  Consensus with Byzantine fault detection 

 

  Multi-party equality    (with local communication) 
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Local Coding 

 

 No forwarding of packets 

 

 Code and check locally 

 

 Desirable property when using in Byzantine 
broadcast  …  faulty nodes cannot tamper packets, 
if they don’t forward anything 
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Claims 

 Bad nodes cannot tamper someone else’s packets 

 
 If no good node finds inconsistency, 

 
  their values are identical 

 
 
 This equality checking helps 

 
 achieve Byzantine broadcast within 
 
  constant fraction of optimal 
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After Failure Identified 
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